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Policy-Gradient Training of Language Models  
for Ranking

How to train LLM-based retrieval models that directly optimize downstream decision-making quality?

We introduce Neural PG-RANK:

• Learns to rank by instantiating a LLM as a Plackett-Luce ranking policy

• End-to-end training of retrieval models as part of larger pipelines via policy gradient

• Can optimize the ranker for any cardinal loss function evaluating the downstream decisions

Overview

Variance Reduction To reduce the variance induced by our Monte Carlo estimates of the gradient,
we incorporate a baseline into our objective. It is important to note that subtracting a baseline from
the objective still provides an unbiased estimate of the gradient. Baselines are commonly employed
in policy gradient methods to enhance the stability of the updates. In the case of Neural PG-RANK,
we adopt the REINFORCE leave-one-out baseline (Kool et al., 2019). The estimation of our policy
gradient, based on N Monte Carlo samples, can be expressed as follows:
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where ri is a sampled ranking and q corresponds to a specific query. �(ri|q) denotes the utility of
the ranking ri for this query q. It subtracts the average utility for all other sampled rankings for this
query. By including the leave-one-out baseline, we enhance the estimation of the policy gradient and
mitigate the impact of high variance in the updates.

Utility While our Neural PG-RANK applies to any utility function �(r|q), we focus on nDCG@10
in our experiments to be able to compare against conventional methods. Moreover, prior work (e.g.,
Wang et al., 2013; Thakur et al., 2021) argues that nDCG offers both theoretical consistency and
a practical balance suitable for both binary and graded sub-level relevance annotations. Following
Oosterhuis (2021), we exploit the insight that the utility at rank k only interacts with the probability
of the partial ranking up to k, and the partial ranking after k does not affect the utility before k. The
estimation of our policy gradient is now:
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5 Experimental Setup

In numerous applications of text retrieval systems, a prevalent practice involves a two-stage procedure:
initially, retrieving a limited set of candidate documents from the full collection (stage 1), and
subsequently, re-ranking these initially retrieved candidate documents (stage 2). We investigate the
effectiveness of our method in both stages by conducting extensive experiments with different models
on various text retrieval benchmarks.

Data We use MS MARCO (Campos et al., 2017), a standard large-scale text retrieval dataset
created from real user search queries using Bing search. We train on the train split of MS MARCO
from the BEIR benchmark suite (Thakur et al., 2021). For tuning hyperparameters, we carve out a
validation set of 7k examples from the training data.

During training, we mimic the two-stage retrieval setup that an eventual production system would
use. In particular, we generate candidate sets of 1k documents per query, composed of ground-truth
relevant documents to the query and irrelevant documents. These irrelevant documents come from a
stage 1 retriever, for which we typically use gtr-t5-xl (Ni et al., 2021) model in this work.

For in-domain evaluation, following prior work, we report performance on the dev set of MS MARCO.
We also report out-of-domain zero-shot evaluation performance of our MS MARCO models on the
subset of BEIR with readily available test sets.1 BEIR contains several existing text retrieval datasets,
ranging from Wikipedia, scientific, financial, and bio-medical domains. Table 5 in Appendix A lists
some details of our evaluation sets.

Evaluation Setup We report nDCG@10 (Normalised Cumulative Discount Gain; Järvelin &
Kekäläinen, 2000) on each evaluation set by reranking the candidate set per query as a second-stage
ranker (Subsection 6.1), or over the full document collection as a first-stage retriever (Subsection 6.2).
In the second-stage ranking evaluation, our candidate set for each query comprises of the top-ranked

1We include the passage ranking task in TREC-DL 2019 (Craswell et al., 2021), a variant of MS MARCO,
as an out-of-domain evaluation set. This dataset is available as the test split of MS MARCO in BEIR.
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Optimize a Plackett-Luce policy


+ REINFORCE update

+ Monte Carlo sampling with N samples

+ Variance reduction with leave-one-out baseline

+ nDCG@10 as utility function

Method

Data: MS MARCO for training; BEIR for evaluation 

Evaluation metric: nDCG@10 

Our ranking policy: either SBERT or TAS-B as warmstart, with Neural PG-RANK method as fine-tuning

Comparison systems:

supervised learning 

SOTA bi-encoder 

models with distilbert-

base-uncased

Experimental Setup

Second-Stage Reranking 
Setup: search over a candidate 

set of 1k documents per query

In-domain Results:

• Performance gains with both 

warmstart models

Out-of-domain Results:

• Comparable generalization

• Notable improvements on 

widely-studied QA datasets

• Weaker in the domain of 

science and finance
Table 4: First-stage retrieval: nDCG@10 in-domain results. * marks evaluations run by us using the
publicly available checkpoint. Bold font represents the highest number per row, and underline shows
the second highest.

Dataset Comparison Systems Ours: Neural PG-RANK

BM25 SBERT* TAS-B* SPLADEv2* with SBERT with TAS-B

MS MARCO dev 0.228 0.434 0.407 0.433 0.416 0.401

Ablation: Training Epochs We investigate how the duration of training impacts the performance
of Neural PG-RANK, in both in-domain and out-of-domain scenarios. In Table 10 in the Appendix,
we present the results for different training duration, specifically 0, 2, and 6 epochs. These results
demonstrate that Neural PG-RANK achieves strong in-domain performance even with just 2 training
epochs. However, there is a slight degradation in out-of-domain performance when the training
duration is increased to 6 epochs. This suggests that Neural PG-RANK has the potential to enhance
its out-of-domain generalization capabilities by carefully selecting the model to strike a balance
between in-domain and out-of-domain performance.

6.2 First-Stage Retrieval

In this section, we evaluate Neural PG-RANK in first-stage retrieval, which is to search over the
entire document collection for each query. This task can be particularly challenging when dealing
with extensive document collections, as is the case when searching through the 8.8 million documents
in the MS MARCO dataset.

Table 4 presents the results when we use Neural PG-RANK policies as first-stage retrievers, even
though they were trained as a second-stage reranker. We find that training Neural PG-RANK for
second-stage reranking is insufficient to match the performance of baseline systems when used as
a first-stage retriever.9 We conjecture that restricting training of Neural PG-RANK to a specific
first-stage retriever creates blind-spots in the learned policies, leading to suboptimal performance
in first-stage retrieval. To overcome this issue, we will investigate cutting-plane methods, which
can enable efficient training even without candidate sets, and which have been shown to be highly
effective (and provably convergent) for training other ranking and structured prediction methods
(Joachims, 2006; Joachims et al., 2009).

7 Conclusion

In this work, we introduce Neural PG-RANK, a novel training algorithm designed to address
challenges associated with training LLM-based retrieval models. As a rigorous approach that reduces
the dependence on intricate heuristics and directly optimizes relevant ranking metrics, Neural PG-
RANK has demonstrated its effectiveness when training objective aligns with evaluation setup
— specifically, in the context of second-stage reranking — by exhibiting remarkable in-domain
performance improvement and presenting substantial out-of-domain generalization to some critical
datasets employed in downstream question answering. Our work establishes a principled bridge
between training objectives and practical utility of the collective set of retrieved results, thereby
paving the way for future research endeavors aimed at constructing highly effective retrieval-based
LLM pipelines that are tailored for practical applications.
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9We observe the same finding in the out-of-domain evaluation, which is reported in Table 11 in the Appendix.
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First-Stage Retrieval 
Setup: search over all documents

In-domain Results: suboptimal


Table 12: Reliance of state-of-the-art comparison systems and our Neural PG-RANK on negative
document mining and additional supervision. Each check denotes a heuristics used during training.
Our method minimizes the reliance on the type of negative documents, and does not require any
additional supervision from other models to improve retrieval performance.

Method Source of Negative Docs Additional Supervision Loss

In-Batch BM25 Dense Model

SBERT (Reimers & Gurevych, 2019) 3 333 3 MarginMSE + NLL
TAS-B (Hofstätter et al., 2021) 3 3 33 MarginMSE + Distillation
SPLADEv2 (Formal et al., 2021) 3 33 3 MarginMSE + Sparsity
Neural PG-RANK (Ours) 3 Utility Maximization

Table 13: Second-stage reranking: nDCG@10 in-domain results. * marks evaluations run by us using
the publicly available checkpoint. Bold font represents the highest number per row, and underline
shows the second highest. Light green color highlights the experiments where our Neural PG-RANK
yields performance gain.

Dataset Domain Comparison Systems Ours: Neural PG-RANK

SBERT* TAS-B* SPLADEv2* with SBERT with TAS-B

MS MARCO dev misc. 0.892 0.893 0.900 0.987 0.982

TREC-DL 2019 misc. 0.743 0.749 0.749 0.742 0.741
TREC-COVID bio-medical 0.764 0.711 0.731 0.690 0.630
NFCorpus bio-medical 0.308 0.320 0.341 0.249 0.303
NQ Wikipedia 0.836 0.836 0.854 0.869 0.878

HotpotQA Wikipedia 0.747 0.785 0.834 0.902 0.900
FiQA-2018 finance 0.291 0.279 0.342 0.131 0.139
ArguAna misc. 0.351 0.479 0.480 0.354 0.443
Touché-2020 misc. 0.480 0.423 0.460 0.363 0.361
Quora Quora 0.962 0.982 0.967 0.963 0.982

DBPedia Wikipedia 0.513 0.513 0.533 0.521 0.525
SCIDOCS scientific 0.144 0.151 0.163 0.108 0.136
FEVER Wikipedia 0.931 0.911 0.929 0.907 0.913
Climate-FEVER Wikipedia 0.442 0.433 0.444 0.438 0.383
SciFact scientific 0.597 0.579 0.696 0.316 0.410
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what do architectural drawings show 

The architecture of a software system is a metaphor, analogous ...

An architectural drawing or architect's drawing is a technical ...

CPU architecture is the layout of the cpu, it is its design -- ...

An architectural engineer helps create efficient buildings and ...

An architecture principle is the enforced way a concept works ..
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4 Method

We present our method, Neural PG-RANK, which addresses the IR problem described in Section 3.

Plackett-Luce Ranking Policy To train our ranking policies, we consider the following functional
form that is compatible with any score-based retrieval architecture. In particular, we define repre-
sentation functions ⌘q✓(q) and ⌘

d
✓ (d), which encode the query q and the document d into fixed-width

vector representations, respectively. Additionally, we introduce a comparison function � which takes
these representations and computes a score:

s✓(q, d) , �(⌘q✓(q), ⌘
d
✓ (d))

Under the Plackett-Luce model (Plackett, 1975; Luce, 1959), we can define a ranking policy ⇡✓(r|q)
based on the scores s✓(q, d). The ranking policy is expressed as a product of softmax distributions:

⇡✓(r|q) =
nY

i=1

exp s✓(q, dr(i))P
j2{r(i),...,r(n)} exp s✓(q, dj)

. (3)

Note that this family of Plackett-Luce ranking policies includes the policy that simply sorts the
documents by their scores as a limiting case:

⇡
sort
✓ (r|q) , argsort

d2dq
s✓(q, d), (4)

where argsort returns the indices that would sort the given array in descending order. In particular,
the Plackett-Luce distribution converges to this sort-based policy when the scores are scaled by a
factor ⌧ with lim ⌧ ! 1. One important distinction between Plackett-Luce policies and sort-based
policies is that Plackett-Luce policies remain differentiable, which is a crucial property exploited by
our training algorithm. Specifically, our policy ⇡✓(r|q) and its logarithm log ⇡✓(r|q) are differentiable
as long as our scoring model s✓ is differentiable.

REINFORCE To solve the optimization problem defined in Equation 2, we propose a policy
gradient approach based on insights from the LTR literature (Singh & Joachims, 2019; Oosterhuis,
2021). Using the log-derivative trick pioneered by the REINFORCE algorithm (Williams, 1992), we
derive the policy gradient as follows:

r✓U(⇡✓|q) = r✓Er⇠⇡✓(·|q) [�(r|q)]
= Er⇠⇡✓(·|q) [r✓ log ⇡✓(r|q)�(r|q)] . (5)

Equation 5 exploits the key insight that we can express the gradient of our utility as the expectation
over rankings of the gradient of the log-probabilities (i.e. the policy gradient) from our ranking policy
⇡✓. We can thus estimate Equation 5 using Monte Carlo sampling, as detailed below.

Monte Carlo Sampling A naive method for sampling rankings from the policy ⇡✓ to estimate the
gradient is to iteratively draw documents without replacement from the softmax distribution over
the remaining documents in the candidate set until there are no more documents left. However, this
process has a quadratic computational complexity with respect to the size n of the candidate set.
Instead, we can equivalently sample rankings more efficiently in O(n log(n)) time by sampling an
entire ranking using the Gumbel-Softmax distribution (Jang et al., 2017) induced by our policy ⇡✓.

Given a query q and its respective candidate set dq , to sample an ordering r of documents from our
policy ⇡✓, we first compute the scores ⇡✓(r(d)|q) for all documents d in the candidate set, as defined
in Equation 3. To sample from this induced distribution, we use the Gumbel-Softmax trick. For every
document d in the candidate set, we draw independent and identically distributed (i.i.d.) Gumbel
samples from the Gumbel distribution gd ⇠ Gumbel(0, 1). Then, we calculate the softmax of the
sum of the log scores and their corresponding Gumbel samples as follows:

xd =
exp(log ⇡✓(r(d)|q) + gd)P

d2dq exp(log ⇡✓(r(d)|q) + gd)

Finally, we sort the documents according to their xd values, resulting in the sampled ranking r.
In practice, this sampling procedure allows us to sample rankings as fast as we can sort top-K
documents, resulting in a O(n log(n)) runtime complexity.
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