Policy-Gradient Training of Language Models for Ranking

Ge Gao, Jonathan D. Chang, Claire Cardie, Kianté Brantley, Thorsten Joachims

ers CIS Science TECH

Background

<u>Task definition of retrieval</u>: rank documents based on their relevance to a query

Query and Documents

what do architectural drawings show

- **D1** The architecture of a software system is a metaphor, analogous ...
- **D2** An architectural drawing or architect's drawing is a technical ...
- **D3** CPU architecture is the layout of the cpu, it is its design -- ...
- **D4** An architectural engineer helps create efficient buildings and ...
- **D5** An architecture principle is the enforced way a concept works ...

Background

- <u>Task definition of retrieval</u>: rank documents based on their relevance to a query
- <u>Application of retrieval models</u>: ranked documents are input to some downstream models; separate from training retrieval models

Query and Documents

what do architectural drawings show

- **D1** The architecture of a software system is a metaphor, analogous ...
- **D2** An architectural drawing or architect's drawing is a technical ...
- **D3** CPU architecture is the layout of the cpu, it is its design -- ...
- **D4** An architectural engineer helps create efficient buildings and ...
- **D5** An architecture principle is the enforced way a concept works ...

Background

documents (i.e. hard negatives)

Image from https://www.sciencedirect.com/topics/computer-science/contrastive-loss

 <u>Conventional training objectives:</u> contrastive loss, requiring ground truth annotation for relevant documents and estimation for truly irrelevant

Overview

directly optimize downstream decision-making quality

• We introduce **Neural PG-RANK** to train LLM-based retrieval models that

Overview

- We introduce **Neural PG-RANK** to train LLM-based retrieval models that directly optimize downstream decision-making quality
 - Learns to rank by instantiating a LLM as a Plackett-Luce ranking policy
 - <u>End-to-end training</u> of retrieval models as part of larger pipelines via policy gradient
 - Can optimize the ranker for <u>any cardinal loss function</u> evaluating the downstream decisions

Overview

\bullet directly optimize downstream decision-making quality

Query and Documents

what do architectural drawings show

- **D2** An architectural drawing or architect's drawing is a technical ...
- D3 CPU architecture is the layout of the cpu, it is its design -- ...
- **D4** An architectural engineer helps create efficient buildings and ...

We introduce **Neural PG-RANK** to train LLM-based retrieval models that

Setting

Define the utility of a ranking policy for a given query \bullet

Utility function $U(\pi|q) = \mathbb{E}_{r \sim \pi(\cdot|q)} \left[\Delta(r|q) \right]$ Query Ranking

Define the utility of a ranking policy for a given query \bullet

$$U(\pi|q) = \mathbb{E}_r$$

Learning objective is to learn a ranking policy that optimizes the expected utility over the query distribution

$$\pi^* = \operatorname*{argmax}_{\pi \in \Pi}$$

Setting

Utility function $\sim \pi(\cdot|q) \left[\Delta(r|q)\right]$ Query Ranking

 $\mathbf{x} \mathbb{E}_{q \sim \mathcal{Q}} \left[U(\pi | q) \right]$

Define a Plackett-Luce ranking policy

defined as

Method

Definition 1 (Plackett-Luce Model (Plackett, 1975; Luce, (1959)). Given the utility scores of the N items, $\boldsymbol{w} = [w_1, w_2, \cdots, w_N]^T$, the probability of observing a certain ordered list of these items, (i_1, i_2, \dots, i_N) , is

 $p((i_1, i_2, \cdots, i_N); \boldsymbol{w}) = \prod_{j=1}^N rac{\exp(w_{i_j})}{\sum_{l=j}^N \exp(w_{i_l})}.$

- Define a Plackett-Luce ranking policy
 - expressed as a product of softmax distributions
 - based on query-document relevance scores Scoring function Query Doc $\exp s_{\theta}(q, d_{r(i)})$ $,\ldots,r(n)\} \exp s_{\theta}(q,d_j)$

$$\pi_{\theta}(r|q) = \prod_{i=1}^{n} \frac{\mathrm{e}^{i}}{\sum_{j \in \{r(i)\}}}$$

• We use REINFORCE

$\nabla_{\theta} U(\pi_{\theta} | q) = \nabla_{\theta} \mathbb{E}_{r \sim \pi_{\theta}}(\cdot | q) \left[\Delta(r | q) \right]$

 $= \mathbb{E}_{r \sim \pi_{\theta}(\cdot|q)} \left[\nabla_{\theta} \log \pi_{\theta}(r|q) \Delta(r|q) \right]$

- We use **REINFORCE**
 - + Monte Carlo sampling with N samples
 - + Variance reduction with leave-one-out baseline

$$\widehat{\nabla}_{\theta} U(\pi_{\theta}|q) = \frac{1}{N} \sum_{i} \left[\nabla_{\theta} \log \pi_{\theta}(r_{i}|q) \left(\Delta(r_{i}|q) - \frac{1}{N-1} \sum_{j \neq i} \Delta(r_{j}|q) \right) \right]$$

- We use **REINFORCE**
 - + Monte Carlo sampling with N samples
 - + Variance reduction with leave-one-out baseline
 - + nDCG@10 as utility function

 $\left(nDCG(r_{i,k}, |q, r_{i,1}, k-1) - \frac{1}{N-1} \sum_{k=1} nDCG(r_{j,k}, |q, r_{i,1}, k-1) \right) \right]$ $j \neq i$

- nDCG@10: score between 0 and 1; higher means better ranking \bullet
- nDCG@10 is an approximation of the downstream utility in our work
- Assumption: higher nDCG@10 relates to better downstream task performance

Query and Documents

what do architectural drawings show

- **D1** The architecture of a software system is a metaphor, analogous ...
- An architectural drawing or architect's drawing is a technical ... D2
- D3 CPU architecture is the layout of the cpu, it is its design -- ...
- **D4** An architectural engineer helps create efficient buildings and ...
- An architecture principle is the enforced way a concept works ...

Utility

• Data: MS MARCO for training; BEIR [Thakur et al., 2021] for evaluation

Split (\rightarrow)					Train	Dev		Test		Avg. W	ord Length
Task (↓)	Domain (\downarrow)	Dataset (\downarrow)	Title	Relevancy	#Pairs	#Query	#Query	#Corpus	Avg. D/Q	Query	Documen
Passage-Retrieval	Misc.	MS MARCO [45]	×	Binary	532,761		6,980	8,841,823	1.1	5.96	55.98
Bio-Medical Information Retrieval (IR)	Bio-MedicalBio-MedicalBio-Medical	TREC-COVID [65]NFCorpus [7]BioASQ [61]		3-level 3-level Binary	 110,575 32,916	324	50 323 500	171,332 3,633 14,914,602	493.5 38.2 4.7	10.60 3.30 8.05	160.77 232.26 202.61
Question Answering (QA)	Wikipedia Wikipedia Finance	NQ [34] HotpotQA [76] FiQA-2018 [44]	✓ ✓ ×	Binary Binary Binary	132,803 170,000 14,166	5,447 500	3,452 7,405 648	2,681,468 5,233,329 57,638	1.2 2.0 2.6	9.16 17.61 10.77	78.88 46.30 132.32
Tweet-Retrieval	Twitter	Signal-1M (RT) [59]	X	3-level			97	2,866,316	19.6	9.30	13.93
News Retrieval	News News	TREC-NEWS [58] Robust04 [64]	×	5-level 3-level		<u> </u>	57 249	594,977 528,155	19.6 69.9	11.14 15.27	634.79 466.40
Argument Retrieval	Misc. Misc.	ArguAna [67] Touché-2020 [6]	✓ ✓	Binary 3-level	<u> </u>		1,406 49	8,674 382,545	1.0 19.0	192.98 6.55	166.80 292.37
Duplicate-Question Retrieval	StackEx. Quora	CQADupStack [25] Quora	×	Binary Binary	<u> </u>	5,000	13,145 10,000	457,199 522,931	1.4 1.6	8.59 9.53	129.09 11.44
Entity-Retrieval	Wikipedia	DBPedia [21]	 ✓ 	3-level		67	400	4,635,922	38.2	5.39	49.68
Citation-Prediction	Scientific	SCIDOCS [9]	 ✓ 	Binary			1,000	25,657	4.9	9.38	176.19
Fact Checking	Wikipedia Wikipedia Scientific	FEVER [60] Climate-FEVER [14] SciFact [68]	✓ ✓ ✓	Binary Binary Binary	140,085 920	6,666 	6,666 1,535 300	5,416,568 5,416,593 5,183	1.2 3.0 1.1	8.13 20.13 12.37	84.76 84.76 213.63

- <u>Data:</u> MS MARCO for training; BEIR [Thakur et al., 2021] for evaluation
- Evaluation metric: nDCG@10
- et al., 2021] as warmstart, with Neural PG-RANK method as fine-tuning

• Our ranking policy: either SBERT [Reimers & Gurevych, 2019] or TAS-B [Hofstätter]

- Data: MS MARCO for training; BEIR [Thakur et al., 2021] for evaluation
- Evaluation metric: nDCG@10
- Our ranking policy: either SBERT [Reimers & Gurevych, 2019] or TAS-B [Hofstätter et al., 2021] as warmstart, with Neural PG-RANK method as fine-tuning

Image from https://www.sbert.net/examples/applications/cross-encoder/README.html and ColBERT

- <u>Data:</u> MS MARCO for training; BEIR [Thakur et al., 2021] for evaluation
- Evaluation metric: nDCG@10
- Our ranking policy: either SBERT [Reimers & Gurevych, 2019] or TAS-B [Hofstätter] et al., 2021] as warmstart, with Neural PG-RANK method as fine-tuning
- <u>Comparison systems</u>: supervised learning SOTA bi-encoder models

Method	Source In-Batcl	e of Neg n BM25	gative Docs Dense Mode	Additional Supervision	Loss
SBERT (Reimers & Gurevych, 2019)					MarginMSE + NLL
TAS-B (Hofstätter et al., 2021)		\checkmark			MarginMSE + Distillat
SPLADEv2 (Formal et al., 2021)					MarginMSE + Sparsit
Neural PG-RANK (Ours)					Utility Maximization

• <u>Setup</u>: search over a candidate set of 1k documents per query

- <u>Setup</u>: search over a candidate set of 1k documents per query
- In-domain results:
 - Performance gains with both warmstart models (nDCG@10)

Dataset	Domain	Co	mparison S	Ours: Neural PG-RANK		
		SBERT*	TAS-B *	SPLADEv2*	with SBERT	with TAS-B
MS MARCO dev	misc.	0.892	0.893	0.900	0.987	<u>0.982</u>

- <u>Setup</u>: search over a candidate set of 1k documents per query
- In-domain results:
 - Performance gains with both warmstart models (nDCG@10)

Dataset	Domain	Comparison Systems			Ours: Neural PG-RANK		
		SBERT*	TAS-B *	SPLADEv2*	with SBERT	with TAS-B	
MS MARCO dev	misc.	0.892	0.893	0.900	0.987	<u>0.982</u>	

More gains in terms of nDCG@k with smaller k (nDCG@1 below)

Dataset		Co	mparison S	ystems	Ours: Neural PG-RANK		
		SBERT*	TAS-B*	SPLADEv2*	with SBERT	with TAS-B	
MS MA	RCO dev [‡]	0.826	0.819	0.830	0.975	<u>0.965</u>	

• Out-of-domain results:

Dataset	Domain	Comparison Systems			Ours: Neura	Ours: Neural PG-RANK		
		SBERT*	TAS-B *	SPLADEv2*	with SBERT	with TAS-B		
MS MARCO dev	misc.	0.892	0.893	0.900	0.987	<u>0.982</u>		
TREC-DL 2019	misc.	0.743	0.749	0.749	0.742	0.741		
TREC-COVID	bio-medical	0.764	0.711	0.731	0.690	0.630		
NFCorpus	bio-medical	0.308	0.320	0.341	0.249	0.303		
NQ	Wikipedia	0.836	0.836	0.854	<u>0.869</u>	0.878		
HotpotQA	Wikipedia	0.747	0.785	0.834	0.902	<u>0.900</u>		
FiQA-2018	finance	<u>0.291</u>	0.279	0.342	0.131	0.139		
ArguAna	misc.	0.351	0.479	0.480	<u>0.354</u>	0.443		
Touché-2020	misc.	0.480	0.423	<u>0.460</u>	0.363	0.361		
Quora	Quora	0.962	0.982	<u>0.967</u>	0.963	0.982		
DBPedia	Wikipedia	0.513	0.513	0.533	0.521	<u>0.525</u>		
SCIDOCS	scientific	0.144	<u>0.151</u>	0.163	0.108	0.136		
FEVER	Wikipedia	0.931	0.911	0.929	0.907	0.913		
Climate-FEVER	Wikipedia	0.442	0.433	0.444	0.438	0.383		
SciFact	scientific	<u>0.597</u>	0.579	0.696	0.316	0.410		

• Out-of-domain results:

Dataset	Domain	Comparison Systems			Ours: Neural PG-RANK		
		SBERT*	TAS-B*	SPLADEv2*	with SBERT	with TAS-B	
MS MARCO dev	misc.	0.892	0.893	0.900	0.987	<u>0.982</u>	
TREC-DL 2019	misc.	0.743	0.749	0.749	0.742	0.741	
TREC-COVID	bio-medical	0.764	0.711	<u>0.731</u>	0.690	0.630	
NFCorpus	bio-medical	<u>0.308</u>	0.320	0.341	0.249	0.303	
NQ	Wikipedia	0.836	0.836	0.854	0.869	0.878	
HotpotQA	Wikipedia	0.747	0.785	0.834	0.902	<u>0.900</u>	
FiQA-2018	finance	<u>0.291</u>	0.279	0.342	0.131	0.139	
ArguAna	misc.	0.351	0.479	0.480	<u>0.354</u>	0.443	
Touché-2020	misc.	0.480	0.423	<u>0.460</u>	0.363	0.361	
Quora	Quora	0.962	0.982	<u>0.967</u>	0.963	0.982	
DBPedia	Wikipedia	0.513	0.513	0.533	0.521	<u>0.525</u>	
SCIDOCS	scientific	0.144	<u>0.151</u>	0.163	0.108	0.136	
FEVER	Wikipedia	0.931	0.911	0.929	0.907	0.913	
Climate-FEVER	Wikipedia	0.442	0.433	0.444	0.438	0.383	
SciFact	scientific	0.597	0.579	0.696	0.316	0.410	

• Out-of-domain results:

Dataset	Domain	Comparison Systems			Ours: Neural PG-RANK		
		SBERT*	TAS-B*	SPLADEv2*	with SBERT	with TAS-B	
MS MARCO dev	misc.	0.892	0.893	0.900	0.987	<u>0.982</u>	
TREC-DL 2019	misc.	<u>0.743</u>	0.749	0.749	0.742	0.741	
TREC-COVID	bio-medical	0.764	0.711	<u>0.731</u>	0.690	0.630	
NFCorpus	bio-medical	0.308	0.320	0.341	0.249	0.303	
NQ	Wikipedia	0.836	0.836	0.854	0.869	0.878	
HotpotQA	Wikipedia	0.747	0.785	0.834	0.902	<u>0.900</u>	
FiQA-2018	finance	0.291	0.279	0.342	0.131	0.139	
ArguAna	misc.	0.351	0.479	0.480	0.354	0.443	
Touché-2020	misc.	0.480	0.423	<u>0.460</u>	0.363	0.361	
Quora	Quora	0.962	0.982	0.967	0.963	0.982	
DBPedia	Wikipedia	0.513	0.513	0.533	0.521	0.525	
SCIDOCS	scientific	0.144	<u>0.151</u>	0.163	0.108	0.136	
FEVER	Wikipedia	0.931	0.911	0.929	0.907	0.913	
Climate-FEVER	Wikipedia	0.442	0.433	$\mathbf{0.44\overline{4}}$	0.438	0.383	
SciFact	scientific	<u>0.597</u>	0.579	0.696	0.316	0.410	

- Setup: search over a candidate set of 1k documents per query
- In-domain results:
 - Performance gains with both warmstart models
 - More gains in terms of nDCG@k with smaller k (nDCG@1, 3, 5)
- Out-of-domain results:
 - Comparable generalization to in-domain results
 - Notable improvements on widely-studied QA datasets
 - Weaker in the domain of bio-medicine, science and finance

Result: First-Stage Retrieval

• <u>Setup</u>: search over all documents per query

Result: First-Stage Retrieval

- <u>Setup</u>: search over all documents per query
- In-domain results:
 - Suboptimal compared to warmstart models

Dataset		Compa	Ours: Neural PG-RAN			
	BM25	SBERT*	TAS-B*	SPLADEv2*	with SBERT	with TAS-
MS MARCO dev	0.228	0.434	0.407	0.433	0.416	0.401

Summary

- We introduce Neural PG-RANK to train LLM-based retrieval models that directly optimize downstream decision-making quality
 - Learns to rank by instantiating a LLM as a Plackett-Luce ranking policy
 - End-to-end training of retrieval models as part of larger pipelines via policy gradient
 - Can optimize the ranker for <u>any cardinal loss function</u> evaluating the downstream decisions
- When the training objective aligns with the evaluation setup, Neural PG-RANK yields remarkable in-domain performance improvement, with substantial out-of-domain generalization to some critical datasets employed in downstream QA tasks.